生物信息学方法
生物信息学方法
前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物信息学方法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
生物信息学方法范文第1篇
关键词:蛋白质-蛋白质对接;分子动力学模拟;蛋白质-蛋白质相互作用
Abstract:Proteins that play a critical role in many cellular processes often perform their functions by interacting with other proteins. Therefore, the studies of protein-protein interactions are vital to exploring the essence of life, understanding the mechanism of diseases and developing new drugs to improve human health. With the sustained development of bioinformatics, more and more computational methods have been applied to structural and functional research of proteins. Protein-protein docking and molecular dynamics simulation are both widely applied to the studies of protein-protein interactions. This article reviews the theory of computational methods, softwares and the application in protein-protein interactions.
Key words:Protein-protein docking; Molecular dynamics simulation; Protein-protein interactions
众所周知,蛋白质在生物进程中扮演着重要的角色。蛋白质通过与其他生物大分子(如蛋白质,DNA和RNA)相互作用介导细胞内各种重要的生理过程,如基因的复制、转录、翻译以及细胞周期调控、信号转导、免疫反应等,其中,蛋白质-蛋白质相互作用尤为常见。因此蛋白质-蛋白质相互作用的研究有助于人们探明其细胞内功能,从而了解各种疾病发生机制,为进一步的新药研发提供帮助。目前为止,研究蛋白质-蛋白质相互作用主要有酵母双杂交、免疫共沉淀、亲和色谱、质谱、核磁共振等多种实验方法,这些技术为蛋白质相互作用研究做出了重要贡献,积累了宝贵的数据资源。
随着计算机处理能力的不断提升,生物信息学的理论模拟方法得到迅速发展和广泛应用。生物信息学整合数学,物理,化学,信息学等众多学科的优势,以计算模拟手段进行生物学相关研究。自Janin和同事们[1]首次运用自动化对接算法预测牛胰蛋白酶抑制剂-胰蛋白酶复合物3D结构至今,蛋白质-蛋白质对接领域已取得很大进步。该方法常用于蛋白质结构及功能研究,分析配体与蛋白质间或者蛋白质-蛋白质间的相互作用模式,便于研究者从原子水平探究受体-配体间作用机制。分子动力学模拟在诞生至今的几十年中不断随着计算机软硬件技术的快速提升而愈加发展完善,已经成为研究蛋白质、核酸等生物大分子的结构和动力学特性的重要工具。本文将对蛋白质-蛋白质对接和分子动力学模拟的基本原理及其在蛋白质间相互作用研究中的应用进行简要概述。
1 蛋白质-蛋白质对接
准确的蛋白质-蛋白质复合物结构是进行蛋白质-蛋白质相互作用研究的基础。然而,通过实验方法测定蛋白质-蛋白质复合物结构比测定单个蛋白质更加困难。随着计算机水平的不断发展,人们开始希望用计算模拟手段来预测蛋白质复合物的真实结构,并希望从原子层面来分析蛋白质-蛋白质相互作用的内部机制。蛋白质-蛋白质分子对接是一种常用的方法。它是指利用两个单体蛋白质的三维空间结构,来预测蛋白质-蛋白质复合物结构。解决蛋白质对接问题有两个关键因素:打分函数和搜索算法[2]。打分函数应能够区分出正确的或近似正确的蛋白质对接复合物,而且搜索算法需严格地探索由相互作用的蛋白质形成的巨大构象空间。
1.1打分函数 蛋白质-蛋白质对接可以被归类为一个全局最优化问题,其主要目的是找到蛋白质分子间最稳定关联结构。使用打分函数是准确评估结合蛋白间的相互作用所必需的。打分函数有两个作用:构象采集和母板选择及精制。打分函数的根本目的是从错误的对接取向中区分出正确或近似正确的对接取向。打分函数主要有两种类型:基于物理原理的函数和基于实验知识的函数。通常,基于物理原理的能量函数用分子力场如CHARMM[3]和AMBER[4]描述蛋白质-蛋白质相互作用。
打分函数可能包括几何学与化学的互补,静电力、范德华力和氢键的相互作用以及解相关能量项。最常用的打分函数是形状互补。经常将形状互补与FFT算法联合应用于详尽的全局搜索。静电场在带电粒子或极性分子间的相互作用中扮演着重要角色。泊松-玻尔兹曼方程常被用来解决从原子水平获得溶剂化生物分子系统的静电电位问题。打分函数包括了极其重要的离散和核心相互作用,通常用范德华力相互作用来描述。
1.2搜索算法 搜索算法的主要目的就是在势能图上定位最稳定的状态。对接复合物可能解的构象搜索可通过两种不同的方案执行。第一种方案是进行全空间搜索,第二种是随机地或按一定顺序只搜索局部空间。快速傅里叶变换是最为著名的用于全空间的搜索算法之一。Katchalski-Katzi[5]和助手首次将快速傅里叶变换法用于蛋白质对接,确定受体配体间几何契合。该方法被应用于许多程序,如GRAMM[6], FTDock[7],3D-Dock[8]以及ZDock[9]。局部搜索算法包括模拟退火,蒙特卡洛法及遗传算法等。Vieth和助手们[10]发现分子动力学法最适于进行大空间搜索,而遗传算法比其他算法更适合进行小空间搜索。大多数情况下,蒙特卡洛算法和分子动力学算法都用来进行蛋白质柔性处理。
1.3对接过程 蛋白质-蛋白质对接一般通用的过程包括:①尽可能多的从全局或局部搜索中生成对接复合物;②筛选和评估复合物;③精制和重排。这三步可被细分为更多步。第一步完成刚体的全局搜索,尽可能多的生成对接蛋白质-蛋白质构象。在第二步中,采用生物或实验信息和打分函数来扫描并评估第一步得到的对接复合物。错误对接复合物的得分比接近X射线结构复合物的得分高是很常见的,许多得分高的结构并不实际存在。应过滤掉这些不实际存在的结构,将剩下的对接复合物进行评估。第三步涉及到侧链及可能骨架的柔性。柔性处理时主要进行重排侧链。
2 分子动力学模拟
分子动力学模拟是一门利用经典力学来模拟大分子体系运动的方法,它综合了数学、统计物理、化学、计算机等多门学科的内容。分子力场是分子动力学模拟的基础。它采用简单的函数来描述分子能量与结构之间的关系。分子力场的基本函数形式包括了原子之间的成键相互作用与非键相互作用。非键相互作用主要包含了范德华力与长程静电力。
2.1分子动力学模拟过程 分子动力学模拟的步骤主要包括了四步:第一步是确定初始构象,初始构象尽量选越接近模拟系统的结构越好,通常是能量较低的构象。通常采用分子力学方法对其构象进行优化;第二步平衡相过程,在前一步中已经确定的模拟体系将进行平衡相过程。在构建平衡相的过程中,须对其构象以及温度等参数进行调控并加以监控,还要判断体系是否已经达到平衡;第三步生产相过程,模拟体系中的分子以及构成分子的原子开始根据初始速度运动,此时根据牛顿力学和预先给定的粒子间相互作用势来对各个粒子的运动轨迹进行计算,并从这个过程中抽取计算分析时所需要的数据和样本;第四步将对计算结果进行深入分析处理。
2.2研究进展及常用软件 Tajkhorshid等成功的模拟了水分子通过不同通道亚型的过程[11]。Xu等在水溶液和磷脂双层中对β淀粉样多肽进行了多次长时间分子动力学模拟,发现在生物膜和有机溶剂中以α螺旋为主,在水溶液中则以无规则卷曲为主[12]。京都大学医学研究科的岩田想[13]成功分析了存在于细胞的,负责将物质运送到细胞内的一种蛋白Mhp1的构造,运用该结果通过在计算机上模拟,在分子层次上弄清了Mhp1将物质运往细胞内的机制。
目前,用于分子动力学模拟的软件越来越成熟。较为常用的主要有:GROMACS,NAMD, AMBER,CHARMM,TINKER、LAMMPS等。GROMACS[14]是用户界面友好的分子动力学模拟软件,模拟中的参数条件和基本功能已经趋于成熟,里面包含多种力场,非常适用于模拟生物大分子这种复杂体系。同时由于其速度快,在非生物体系统中也得到了广泛的应用。AMBER[15]不仅是一个程序,而是包含了从体系准备到动力学模拟,再到轨迹分析等一系列程序的集合。同时,AMBER 还是一系列力场的名称,这些力场涵盖了蛋白质、核酸、糖类、脂类等众多生物大分子。NAMD同样适用于模拟计算蛋白质、核酸等生物大分子体系,而且并行计算效率非常高。
3 展望
目前,蛋白质分子对接及分子动力学模拟等计算手段虽然已广泛用于蛋白质-蛋白质间相互作用的相关研究,但还是存在一些值得改进的地方。例如,蛋白质-蛋白质对接过程中,蛋白质柔性的相关处理,构象搜索的合理性及打分函数的准确度;分子动力学模拟中力场的种类和所研究体系的匹配度等。随着计算机技术不断的发展,这些生物信息学方法有待进一步优化和相关软件需要进一步完善,从而使其更适用于蛋白质等生物大分子的模拟研究。总之,将生物信息学方法与传统实验手段相结合来进行蛋白质间相互作用等生物大分子体系研究,是一条有待进一步发展的有效途径。
参考文献:
[1]WodakS J,puter analysis of protein-protein interaction[J].Journal of molecular biology,1978,124:323-342.
[2]Taylor,J.S.and Burnett,RM.DARWIN:A program for docking flexible molecules[J].Proteins. 2000,41:173-191.
[3]Brooks,B.R.,States,D.J., S.andKarplus,M.CHARMM: a program for macromolecular energy, minimization, and dynamics calculations[J]put.Chem.1983,4: 87-217.
[4]Ferguson, D.M., Kollman,P.A.A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. J. Am. Chem. Soc,1995, 117: 5179-5197.
[5]Katchalski,Vakser,I.A.Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques[J].Proc.Nat.Acad.Sci.USA,1992.89: 2195-2199.
[6]Tovchigrechko, Vakser, I.A.Development and Testing of an Automated Approach to Protein Docking[J].Proteins,2005,60:296-301.
[7]Gabb,H.A.,Sternberg,M.J.E.Modeling protein docking using shape complementarity, electrostatics and biochemical information[J].JMB.1997,272:106-120.
[8]Moont, Sternberg,M.J.E.Modelling protein-protein and protein-DNA docking[J].In Bioinformatics - From Genomes to Drugs,2001,1:361-404.
[9]Chen, R.and Weng,Z.A novel shape complementarity scoring function for protein-protein docking[J].Proteins,2003,51:397-408.
[10]Vieth, M., Hirst.Assessing search strategies for flexible docking[J]put.Chem,1998,19: 1623-1631.
[11]Tajkhorshid,E, Schulten, K.,Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science, 2002, 296: 525-530.
[12]Xu ,Y.,Jiang, H.Conformational transition of amyloid beta-peptide[J].PNAS.USA,2005,102: 5403-5407.
[13]Shima mura,T.,Beckstein. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1[J].Science.2010,328:470-473.
生物信息学方法范文第2篇
〔关键词〕生物医学信号;相似性;度量方法;窗口斜率法
生物医学信号是由复杂的生命体发出的不稳定的自然信号,可以反映出生物体所处的状态及生命情况等,生物医学信号不同于其他信号,具有本身的特征和测试方法。通常生物信号包括心电、呼吸、脉搏等,这些信号是生物生命活动的基本属性[1]。采集生物体内的信号后,可以根据信号的特征对生物体所处状态进行分析和研究,为诊断生物体器官功能并确定治疗方法提供可靠的依据。
1生物体医学信号
生物体不同信号的波形图。几种常见的心电波形图如图2所示,可以看出不同形态的生物体反映出不同的信号特征,进而反映在波形图上。医师可以根据波形图的特征对生物体的病情加以判断,从而进行针对性治疗。计算机和智能化技术的不断发展为生物信号诊断技术提供可靠的保证。正确地划分生物信号类别是医学内的重要保证。一般来说,对波形间的相似性程度进行划分类别,再对不同类别信号加以分析,可以缩短工作量,提高工作效率和分析的准确性,这是目前生物信号研究的发展方向。
2相似性分析法
指采用某种方法来描述和分析两者之间的相似度。相似性分析通常分为两个步骤:特征提取和表示以及相似性度量。由于生物体发出的生物自然信号能够随时间的推移而发生变化,因此可以把生物信号作为时序信号中的一种。对时序数据的分析目前已广泛应用,例如气象变化情况、石油勘探情况、股票走势数据等。可以看出时序数据具有很大的复杂性和计算量,其相似性度量会很大程度影响着分析的结果。生物信号同样具有上述特性,复杂多变是生物信号波形曲线形态的主要特征,因此其相似性分析要包括以下两个方面:一是从原始生物信号中提取特征信息,进行优化组合,作为表示特征向量;二是对特征向量进行相似性度量或分类。原始数列的特征提取对降低计算量有很好的帮助,通过只保留数列的主要形态,去除次要形态和细枝末节,提高数据分析的准确性。目前,特征提取的方法有很多,研究思路也各不相同。Keogh等[2]以时间序列为基础,输出的结果形式为线性分段,这种成为线性分段算法。主要方法是将数列表示为多段线性的直线,从而减少实验数据。这种线性分段算法的优点直观明了,可进行多解析多运算,支持各类测量方法,应用广泛。生物信号作为时间序列的一种,也存在复杂表现形式,因此在分析中会面临很多困难。基线漂移和时间轴的伸缩是生物信号最主要面临的问题[3-4],选择合适的距离度量方法,能够提高相似性分析的准确性。动态时间弯曲(dynamictimewarp,DTW)可以作为一种有效的解决方法,但它的缺点是时间复杂,应用并不广泛.
3生物医学信号相似性分析的关键问题
生物信号作为时序信号的一种,具有维数高、数据量巨大、噪声干扰严重的特点。但由于人体是一个复杂的自然系统,人体信号具有时序信号所没有的一些特点。
3.1随机性强
由于人体的个体差异性很大,所表现出的生理信号也会随之产生差异,比如年龄的差异、性别的差异等。人体健康与生病的生理信号,其差异性会更大。生物医学信号具有随机性,它的特征并不平稳,随着时间发生变化,这种变化为医学中的信号处理带来较大困难。
3.2信号弱,噪声强
一般直接从人体中检测到的电信号幅值比较小。因此,在处理各种生理信号之前要应用放大器。噪声是指其他信号对所研究对象信号的干扰,研究时需要对信号去除噪声再进行研究。
3.3频率范围低
经频谱分析可知,除声音信号(如心音)频谱成分较高外,其他电生理信号的频谱一般较低。
3.4周期性
生物信号的幅值会随着时间而产生周期性的变化,如图3所示的心电波形。首先,将连续信号分为单个波形,即找到电波的最高点为分割点;然后,将连续波形分为多个单段连续的波形。若分割点选取不准确,将会对信号的判断产生影响.生物信号具有维度高、数据多等特征,在相似性分析方面存在一定的难度。由于人们大都注意特征数据的提取方法,因此希望距离度量采用更简单的方法。生物信号经过复杂的特征数据提取后,距离度量通常采用简单方法降低运算复杂程度,提高准确率。生物信号具有信号弱、噪声强、频率范围低等特点,需要采用相应方法达到降维、去噪的功能。通常提取初次特征后,剩余的信息量仍然会很大,因此需要对特征数据进行再优化,采用该方法虽然能保证较高的准确率,但优化过程复杂度过高。
4窗口斜率的特征表示方法
特征提取方法是相似性分析的重要内容,是影响分析的效率和精确性的重要保证。由于生物信号波形的相似性,我们需要关注波形征点的微小差异,重视波形中的细节走势变化,对波形进行分类研究。上文提到,特征提取优化过程复杂度很高,难以同时兼顾提取的效率和准确性,但因为生物信号波形具有周期性,可以将波形按照周期进行划分,波形的变化走势可以用不同阶段内的斜率表示,因此本研究提出了采用窗口斜率的特征表示方法。
4.1窗口斜率表示法
基于X、Y轴的波形图表示方法。首先将该坐标内的区域进行网格划分,网格的大小可由两个参数:阈值t和网格高度h决定。对横坐标的划分网格大小由阈值t确定,对纵坐标的划分网格大小由网格高度h确定。两个参数t和h的大小对窗口效率法分析结果影响较大,对于不同的生物信号波形应选取合适的参数进行划分。在网格划分中,首先设定两个参数,窗口阈值为t,网格高度为h。则波形的任意一个窗口的幅值可表示为(at(i-1)+1,…,ati+1)。任意一个窗口内的纵向幅值差可以通过公式(3-1)来表示。(3-1)从公式可以看出,当阈值t固定后,公式所计算的值实际就是窗口内的斜率,因此这种方法称作窗口斜率表示法。
4.2参数确定
从上述公式的计算方法我们可以看出,窗口斜率特征法的参数t对于窗口内斜率的计算有着重要的影响,参数选择过大,则无法起到精细分析的效果;参数选择过小,会导致任务量增加,网格高度一般选择0.1且不变动。图5显示了心电波形和锋电位波形的形状,进行两种心电波形分析时,采用窗口斜率法首先确定阈值和高度。通常,窗口阈值在关键波峰的1/10~1/5内选择,经过大量实验数据表明,心电波形窗口阈值为4时效果最佳,锋电位波形窗口阈值为2时效果最佳.
4.3窗口斜率法特征提取结果
窗口斜率法的实质就是将坐标内的波形图进行网格划分,对网格内的数据进行斜率计算,计算结果表现在坐标内,从而对相似的波形区分开来。生物信号具有复杂性、纬度高等特征,非常适合采用窗口斜率法进行特征提取。在特征提取过程中主要关注窗口内斜率的变化规律,即使几个波形走势非常相似,但反映在斜率变化上会有很大的不同。图6显示了3种相似的波形经过窗口斜率法计算后,结果对比差异很明显。计算前可以看到3种原始波形很难区分,但通过窗口斜率计算后,特征体现在斜率上会有很大的变化,通过这些变化可以准确判断波形类别,再进行下一步研究分析。
4.4窗口斜率法特点
窗口斜率特征提取法是基于生物信号复杂性与相似性的难点而定。对3种相似的波形采用窗口斜率法计算后,其斜率波形表现出明显的差异,因此,窗口斜率法对于生物信号波形的特征提取非常有用,其原理较为简单,计算方法方便。经窗口斜率法对序列降维计算,能够节约计算量。此外,窗口斜率法能够维持灵敏度和特异度的平衡,使其均保持在较高水平,即在避免异常波形漏检的情况下,提高了波形识别的准确率。因此,窗口斜率法可作为生物信号相似波形处理的重要手段。然而,窗口斜率法的关键点在于选择合适的阈值参数,它很大程度影响计算的准确性。寻找最优阈值是一个烦琐的工作,需要不断地迭代计算。窗口斜率法的关键点在于窗口阈值的选取,该参数对斜率计算结果影响很大,而且对不同波形时要求不尽相同。通过手动选取分类阈值,计算结果会有误差,选不到最优阈值,分类结果也得不到最优。如果阈值范围很大,会造成任务量增大,如何选择确定合适的阈值参数,对于窗口斜率法的应用具有重要影响,这也是下一步工作的主要方向。此外,未来的工作还需要一些实验结果来论证此方法的效果,通过对不同信号波的研究,确定选择最佳阈值参数的方法与理论。
[参考文献]
[1]刘海龙.生物医学信号处理[M].北京:化学工业出版社,2006.
[2]KeoghE,ChakrabartiK,PazzaniM,etal.DimensionalityReductionforFastSimilaritySearchinLargeTimeSeriesDatabases[J].KnowledgeandInformationSystems,2001,3(3):263-286.
[3]练仕榴,郑刚,牟善玲.用于心电波形分析的相似性度量策略[J].计算机工程,2011,37(9):263-265.
生物信息学方法范文第3篇
一、学生的自主学习 的重要性
1、注重培养学生对学习兴趣的培养
兴趣是最好的老师。“变”要我学为“我要学”。学生有了学习兴趣,学习活动对他来说就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,有兴趣的学习事半功倍。在平时的教学工作中,利用物理学的课程资源和现实生活学生喜闻乐见的情景以及生产、科学技术中的广泛应用中,去寻找最能吸引学生的内容,激发学生的学习兴趣。
2、 要指明学生的学习目标
在教学过程中还必须让学生明确学习目标,这样他才会自觉的担负起学习的任务。学生进行学前预习时,要给学生制定出详实的预习提纲,让学生带着问题去学习,明确学习的目标,可以减小盲目性,学生通过自主的学习教材,拓展视野,提高学习的效率。
3、给学生留出自我展示的机会
在课堂上,教师要给学生提供表现的机会,学生通过多种方式展示自己的学习结果,或实验,或板演,通过动手、动脑、动口、动眼的课堂展示,获得成就感。通过其他同学的认同,教师的称赞。激励学生的自主学习欲望会更强烈。通过学生多种形式的展示,学生自主学习的能力也在不断提高。
二、加强学生互助合作的学习
合作学习指的是学生以小组为单位的学习方式。合作学习的主要活动是小组成员的合作学习活动。每组成员都有分工,组长统管全局,进行组织分配谁作记录、谁承担小组发言的任务、小组成员发言时其他同学干什么等等。总之,小组成员必须明白自己应承担的角色,明白各自该为小组做什么,但角色可以适当轮换,这样让小组成员有机会担任不同的角色,为学生创造多种尝试的机会,以此来增强学生的参与意识、合作意识和责任感。小组根据学习目标合作学习,然后通过小组合作学习活动的效果,对各小组总体表现进行评价。
三、加强探究式的学习
探究式的学习要求学生经历与科学工作者进行科学探究时的相似过程,从中掌握有关知识与技能,体验科学探究的乐趣,学习科学探究的方法,领悟科学的思想和精神。注重的是学生活的知识的过程,而不是追求其结果。探究既是一种学习方法,也是一种基本技能。
在物理学科的探究学习中,学生发现问题、提出问题、假设猜想、制定计划与设计实验、分析论证、获得结论,评价并解决问题。 在学生进行探究式学习的教学设计中,教师的"导学"应贯穿于学生学习的全过程。特别是学生刚进行这种方式学习时,学生的探究往往会遇到进行不下去的困难,这时教师的导会显得更为重要,只有教师适时的导,才能保证学生学习的顺利进行 。
在探究学习过程中,学生常常不知道要观察什么,抓不住观察的重点,这就需要教师进行适当的引导,使学生逐渐学会观察,学会设计表格,记录实验现象,收集有关数据等。在探究式学习过程中,学生往往只看到实验的表面现象,不能抓住现象的本质,不能对实验数据进行科学地分析,教师要适时点拨,教会学生分析现象数据的方法,类比法、对比法、转换法、控制变量法、图像法、归纳法等,通过学生的主动顺应,能力不断提高,逐步使学生达到独立自主地进行探究学习。在探究式学习过程中,教师要参与学生的活动,发现问题及时指导。这样的课堂思维和操作气氛浓烈,学生真正做到了有意义的参与,体现了新课改的理念,也显示出教师驾驭课堂的能力。对后进学生所提的简单问题,可让好的学生来回答,这不但解决了后进生的问题,同时对优生也是一次锻炼的机会,促进优生综合能力的提高。
生物信息学方法范文第4篇
关键词:中职;自主预习
从每年的中考和高考的成绩来看,物理科的得分总是较低,这说明普通中学的学生对学好物理的难度较大,对于基础水平相对较差的职业中学的学生,要学好物理更是困难重重。要克服这个困难必须激发学生的学习兴趣,调动学生的自主学习的积极性和主动性,授给学生科学的自主学习的方法,提高学生的自学、观察、分析、判断和应用理论知识解决实际问题的能力,使学生在学习中形成自觉的自主学习的态度和习惯,提高学生的学习效率。笔者认为,物理(电工)课前的自主预习是学生进行自主学习、学好物理(电工)的重要一环。
一、自主预习的重要意义
学生掌握一个新概念、新知识的思维活动过程大概要经过五个阶段:引进——形成——理解——运用——深化。第一个阶段“引进”的思维活动主要通过两种形式进行:一是教师在教学过程中帮助引进,二是学生自己在自主预习中引进。相对来说,学生自己引进对形成新概念、理解新知识、掌握新理论、新规律,并运用新概念、新知识来分析解决实际问题,从而认识新规律、掌握新规律、培养创新精神更有意义。
二、自主预习是知识的复习、巩固和引新
学生通过教师的指导进行自主预习,可达到复习、巩固旧知识,并引出新知识,正如前人所说的“温故而知新”。教师怎样引导学生进行自主预习,学生怎样进行自主预习,是广大师生值得共同探讨的课题。
1. 自主预习具有目的性、针对性、关联性。
自主预习新的内容之前,总要复习与其相关的旧知识,学生自主预习时,目的要明确,针对性要强,联系要紧,有的放矢。例如在预习“牛顿运动定律”之前,应复习与其有联系的物体运动知识。
2. 自主预习要有系统性。
除了要有针对性地复习有关知识以外,还要有系统地复习熟练地掌握旧知识,为以后新知识的学习打下良好的基础。
3. 自主预习要具有延伸引新性。
复习时要把旧知识根据新内容作出适当地延伸,作一些想像,一些假设,看一看是否有新体会、有新发展,有新发现,从而发现新知识。
三、自主预习要采用切实可行的方法
教师在一节课基本结束时,用几分钟时间根据新课程的不同内容,采用不的方法,简单提及一些与新课程有关的新、旧知识,对学生的自主学习、对激发学生的求知欲望非常有好处,为下一节的双边教学,可起到事半功倍的作用。在这里简单谈谈三种学生自觉进行自主学习、自立预习的方法:常规法、比较法和实验法。
1. 常规法。
常规法就是学生进行预习时,用笔“圈、点、勾、画”重点词语、关键语句、疑难语句、单位、公式、常量等,有目的有针对性带着问题在上课中听老师怎样讲授知识、怎样抓住重点、怎样突破难点、怎样运用理论知识解决实际问题,从而掌握物理(电工)概念、物理(电工)规律,提高学习效率。
2. 比较法。
学生用比较的方法进行预习时,主要是用函数国象、表格和实物实验等方法来完成。
(1)函数图象比较。
用函数图象把新知识与旧知识进行比较,从而掌握新知识。例如:学生预习“匀变速直线运动的速度”这一节时,学生先复习题“匀速直线运动的图象”,并画出速度图象:
通过预习,学生自己画出匀变速直线运动的速度函数图象进行比较:
从而理解、掌握课本中的结论:匀变速直线运动的速度图像是一条倾斜的直线,而匀速直线运动的速度图像是一条水平线。
(2)表格比较。
表格比较是通过表格列出若干个项目填写,学生对两个事物进行比较,找出两者间的联系与区别,从而掌握新知识、新规律。
例:学生预习“探究形变与弹力的关系”这节内容时,可先复习“重力”,制定下表,并进行有针对性的比较:
弹力的项目由学生自己在预习时填写,这样学生较容易掌握理解新知识。
(3)实物实验比较。
学生自主预习新课时,用实物实验比较的方法也可直观地掌握以后所要学习的新知识、新规律,激发学习兴趣和积极性,提高效率。
例如,电学中有这样两个结论:
串联电路中电流处处相等,并联电路中总电流等于各支路电流之和。学生在学校实验室中准备如下实物:四个量程相同的电流表、三个电阻、两个干电池、一个开关、导线若干,并按图所示连接起来进行电流测量,就可理解、掌握该结论。
3. 实践法。
自主预习时,学生亲自动手做实验,可收到更好的效果。
例如:在预习“力的等效和替代”一节中,“力的替代”有“一个力的作用效果与另外几个力的共同作用效果相同”这样一句。学生放学后亲自去体验一下:一桶水,一个人可以提起来,两个人也可以提起来,效果一样。这样通过自主预习,然后亲自动手,联系实际,在教师讲课时就可以轻松地理解掌握这个结论。
生物信息学方法范文第5篇
>> 黄瓜DVR基因的生物信息学分析 结核分枝杆菌pst S1基因的扩增及生物信息学分析 丙酮醛诱导细胞凋亡相关基因SHMT2L的生物信息学分析 子宫内膜异位症相关基因和microRNA的挖掘及生物信息学分析 FZ6基因及其蛋白的生物信息学分析 丹参SmNAC1基因的克隆和生物信息学分析 小菜蛾p38MAPK基因的克隆与生物信息学分析 沙棘WRI1转录因子基因的生物信息学分析 水稻2个F―box基因的生物信息学分析 小菜蛾PxALP1基因的克隆与生物信息学分析 太子参分解代谢关键酶8′羟化酶基因的克隆及生物信息学分析 癫痫相关基因SCN1A启动子区多态性位点的生物信息学分析 结核分枝杆菌38kDa蛋白结构与功能的生物信息学分析 玉米淹水诱导表达ZmERF5基因启动子的克隆与生物信息学分析 茶陵野生稻冷响应基因OrCr3的克隆及其生物信息学分析 黄芩葡萄糖醛酸水解酶基因的克隆、生物信息学分析及表达 黔北麻羊RERGL基因cDNA克隆与生物信息学分析 不同物种GATA—2基因编码区生物信息学分析 石榴等观赏植物DFR基因生物信息学分析 高丛越桔UFGT基因电子克隆和生物信息学分析 常见问题解答 当前所在位置:l),包括26种古细菌,286种真细菌。截至2013年9月,收录在GenBank已测基因组全序列的植物病原细菌种类达31种,依靠传统的研究思想和试验手段注释如此庞大的生物信息资源几乎是不可能的。生物信息学的首要任务之一是分析新基因的功能,即从大量不连续的信息中发现其中隐藏着的重要信息。
通过多重序列比对筛选保守序列是生物信息学方法的基础,几乎所有的注释序列的意义、研究序列结构的方法都是建立在此基础上的。保守序列是指病毒在进化过程中基因组序列保持不变或变异很小的序列。在进化过程中,变化很小或者不变的序列往往承担着极其重要的功能,一旦出现变化,功能就会受影响或者被破坏,物种就有被淘汰的危险。因此,保持不变或变化很小的序列可能具有相同的功能。国际上已有专门的数据库(如Blocks、PROSITE和IDENTIFY)和分析软件(如BLAST、DNAsis、FASTA、GCG、MOST、Emotif和Tool)用于保守序列的分析。
本研究利用生物信息学方法对欧文氏杆菌基因组进行分析,发现了71个与铁代谢相关的基因,分别参与了欧文氏杆菌中铁载体的生物合成以及铁的运输、吸收、贮存和调控。
参考文献:
[1] BULTREYS A, GHEYSEN I, MARAITE H, et al. Characterization of fluorescent and non-fluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification[J]. Applied and Environmental Microbiology,2001,67(4):1718-1727.
[2] DERBYSHIRE P, BALDWIN T, STEVENSON P, et al. Expression in Escherichia coli K-12 of the 76, 000-dalton iron-regulated outer membrane protein of Shigella flexneri confers sensitivity to cloacin DF13 in the absence of Shigella O antigen[J]. Infection Immunity,1989,57(9):2794-2798.
[3] BELL M, SEBAIHIA L, PRITCHARD,et al. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors[J]. Proceedings of the National Academy of Science of the United State of America,2004,101(30):11105-11110.
[4] RAYMOND K N, EMILY A, DERTZ, et al. Enterobactin: An archetype for microbial iron transport[J]. Proceedings of the National Academy of Science of the United State of America,2003,100(7):3584-3588.
[5] VELAYUDHAN J, HUGHES N J, MCCOLM A A, et al. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter[J]. Journal of Molecular Biology,2000,37(2):274-286.
[6] LILLARDJR J W, BEARDEN S W , FETHERSTON J D, et al. The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals[J].Microbiology,1999,145(1):197-209.
[7] PERRY R D,SHAH J, BEARDEN S W, et al. Yersinia pestis TonB: role in iron, heme, and hemoprotein utilization[J]. Infection and Immunity,2003,71(7):4159-4162.
[8] MAZMANIAN S K, SKAAR E P, GASPAR A H, et al. Passage of heme-iron across the envelope of Staphylococcus aureus[J]. Science,2003,299(5608):906-909.
[9] MORRISSEY J A, COCKAYNE A, BRUMMELL K, et al. The staphylococcal ferritins are differentially regulated in response to iron and manganese and via PerR and Fur[J]. Infection and Immunity,2004,72(2):972-979.
下一篇:没有了



家庭困难申请书范文
西游记台词 西游记台词玉帝哥哥(精选91句)